
Standards and Practices for
HotDocs Server Applications in Legal Services

Draft revision as of March 23, 2011

Prepared and maintained by Capstone Practice Systems1

This is an evolving document. Corrections and additions are most welcome.

Send them to marc@capstonepractice.com

Contents

Purpose and scope of this document ... 2
Application standards .. 3

General principles ... 3
User interface standards .. 4
Variables ... 4
Dialogs .. 8
Resources .. 9
Scripting .. 10
Word processing issues ... 12
Graphical forms .. 14

Naming HotDocs Components ... 15
Introduction ... 15
Why follow standards in component naming?.. 15
What you can do ... 16
What you can’t do ... 17
Capitalization .. 17
Spaces ... 18
Data type indicators .. 18
Length ... 20
Word choice .. 20
Word sequence .. 21
Examples of recommended names .. 22
Standard HotDocs variables for templates that may be invoked from a case
management system .. 22
An illustrative name set .. 24

Development processes ... 26
Selecting, designing, and planning applications ... 26
Some design challenges .. 26
Separate vs. master component files ... 26
Documentation .. 27
Other resources ... 27

1 Contributors have included Bob Aubin, Kate Bladow, Bart Earle, Sheila Fisher, Marc Lauritsen, Roland
Monson, Jim Robertson, Alan Soudakoff, and Christina Stommel.

Purpose and scope of this document

This document is a reference guide – a compendium of know-how and advice – for
people building and maintaining HotDocs applications intended for delivery to legal
services advocates and clients over the Web. Information, guidance, and suggested
standards are included. This is necessarily a work in progress, and it may frequently be
updated.

This is not a general guide to all aspects of HotDocs template development, some of
which (clause libraries, database connections) are not presently relevant to the online
mode. This is also not a guide to the broader field of document assembly, such as the
pros and cons of alternative software platforms and approaches.

While this document is intended for the nonprofit legal services community, many of the
topics covered are relevant to people doing HotDocs work in other contexts, and we
encourage them to make use of these materials and contribute their own suggestions.
This is the first significant effort we know of to establish standards for document
assembly applications across multiple organizations and jurisdictions. We hope that
some aspects of this work will become de facto standards outside legal services, too.

Application standards

General principles
The following notes include a mixture of suggested standards, design principles, and “tips
and tricks.” It is unrealistic and counterproductive to proliferate standards at too great a
level of detail, but developers should be aware of options, considerations, and tradeoffs.

Some diversity is inevitable and healthy. Some coordination is essential. The trick is to
find an appropriate tradeoff of rigidity and flexibility. We don’t want standards for their
own sake, but we also want to minimize needless reinvention and technical
inconsistencies.

There are several clear benefits of standards:

 Ease of use and effectiveness of tools for the end user
 Lower cost of template development
 Lower cost of template maintenance
 Data consistency (e.g., so users can use the same answer files with different

templates, but also eventually work smoothly with things like electronic court
filings)

And there are important questions of scope (possibly differing on a standard-by-standard
basis). Should your standards apply:

 Across template sets or practice units within one office?
 Across offices?
 Across states and user populations?
 Retroactively?

However you come out on specific points, it is valuable to be consistent at least within
and across your own templates!

For an overview of standards and conventions generally, see Training Materials:
Developing Templates for LawHelp Interactive: Recommended Conventions and
Practices (2010)

All of the points below apply to applications written for use in HotDocs Server. (Some
different issues and suggestions obtain for templates intended for classical HotDocs
desktop usage.) It is assumed that developers are using HotDocs 10 or later for editing.

User interface standards

In general
 Keep it simple
 Be concise
 Don’t ask for the same information more than once
 Don’t ask for information that turns out not to be needed

In particular
See notes on prompts, dialog layouts, helps, etc. in below materials.

There are many considerations of usability, including some peculiar to specific kinds of
users (e.g., self-helpers vs. advocates) that are not yet addressed here.

Variables

Naming
See Naming HotDocs Components below for recommended variable naming standards.

Choice of variable types
Often there is more than one kind of variable to accomplish a given purpose. Here are
some considerations bearing on your choices.

True-False vs. Multiple Choice. A related group of choices can be implemented either
way. Using a single MC variable saves on your component count and provides some
built-in formatting mechanics. Using TF variables gives you more flexibility in
presentation and reuse.

Number vs. Text. Don’t use number variables for zip codes or other “numbers” that will
never be added or otherwise numerically manipulated.

Multiple choice expression vs. Computation. When frequently testing for a multiple
choice option (IF Landlord entity type MC = “corporation”), use a computation
(Landlord is corporation CO). That way if your choice language changes, you’ll only
need to edit one component, not every context the test is used.

Multiple Choice vs. Computation. For pronouns and other simple computed phrases,
consider using computations rather than MCs with merge texts, for better readability of
template. (Some prefer MC variables even though reading is difficult because it can be
hard to name the CO variables in large templates. You can also use the ability to name
Merge Text sets to keep the merge text short.)

Expression vs. Computation. If template expressions are composed of more than 2 or 3
conditions, consider using a computation instead to reduce clutter on the face of your
template.

Date variables. Most dates should be implemented as true HotDocs date variables. That
prevents illegal dates like September 31, enables computations like ages, and gives you the
nice pop-up calendar option. But use text variables for date fields that don't clearly require
a specific date, so that users can enter approximate dates (like month and year only, or a
range). This is pretty common for dates of past employment, etc.

Also, consider using text variables instead of date variables when users may not know in
advance the exact date (e.g. closing date). This may not be possible if the date is used in a
date computation (e.g. 10 days after closing date)

Standalone years are probably best implemented as multiple choice when the possible
answers are in a short range, since when a 4-digit number is entered via a true number
variable, a comma appears non-optionally during entry (even though it can be suppressed
in the document via a format). This can alternatively be dealt with by an appropriate
Prompt or a two-digit year with a computation to convert to four digit (prompt should
disclose what “cut off year” you’ve programmed to determine the right century).

Format
HotDocs will automatically include formats in inserted variable fields based on text you
replace with a variable during template editing. Don't keep the Like This format taken
from pre-existing text if in the future users might need to enter text in a different format
(like capital letters other than at the beginning of words, for example “McDonald”).

Use default merge, formatting, example choices where all or the vast majority of
instances of the variable will use them, but avoid using otherwise. Rationale: The
default does not appear explicitly in the template, so it may complicate testing, debugging
and maintenance to use them. On the other hand, if the variable is always going to
appear with the default, the efficiency gained by not having to specify the merge,
formatting or example may outweigh the cost.

Answer validation
Use minimum and maximum settings for numbers when possible. They reduce user
errors.

Answer patterns
Use patterns when a proper answer will always follow a certain pattern, such as for

 social security number – 999-99-9999
 time - 99:99 x.m.

Don’t use patterns for things like telephone numbers when you expect many variations with
international dialing, extensions, etc. Be aware that answers saved from template versions
in which a pattern is present for a variable may not act as expected when the pattern is
absent, and vice versa.

Prompts
Do:
 use “complete the sentence” or similar language or provide example answers when

the style or syntax of response is not obvious
 use the “$” choice in currency variables so that users understand when dollar

amounts are involved

Avoid:
 colons in prompts
 long questions
 redundant words in prompts such as “Plaintiff last name,” “Plaintiff first name,”

and “Plaintiff middle initial”

Note that:
 You can type “NONE” in the prompt field when no prompt is desired

Advanced options
Use REQUIREd answers sparingly to maintain flexibility for users. You can always script
a custom warning instead.

Specific variable types
true/false

Checking ‘Yes/No on same line’ helps minimize vertical height of dialogs and need
to scroll.

multiple choice

Note that the “grid” display options doesn’t display correctly in HotDocs Server.

text

Increase lines to 2 or more if longer answers are anticipated or if intermediate line
breaks need to be accommodated (returns entered by user).

Consider instructing the user not to insert a hard return at the end of their answer, as this

adds an unwanted line break in the assembled document.

number variables

You can put dollar signs either in a variable's format field or in the body of the template. If
the former, it’s easier to get them everywhere needed when replacing a repeatedly used
value with variables.

To format fractions you may need to use a computation. Also, be aware of the rounding
done on fractions by HotDocs.

In formatting numbers, remember that a 9 will display a digit unless it is a leading zero or a
trailing zero after the decimal point. A 0 will display digits even if they are leading or
trailing zeros.

Avoid HotDocs’s own numbering variables (<PN>) since these are not dynamic in
generated documents. Instead use word processor-based auto-numbering, but see caveats
below.

telephone numbers

Country code (if needed) and Area code variables should be up to 3-digit numeric fields.
Only needed as separate variables in forms that have different text locations for different
parts of the number.

You can have a Full telephone number CO computation that combines the above to the
extent answered

person name variables

It is usually best to create just a single variable for a person’s name, unless components are
specifically needed separately, as when preparing a letter salutation (Dear Jim or Dear Mr.
Smith) or a form in which parts of the name need to be positioned in separate boxes.2

Possible components to be aware of include:

 family, surname(s), last
 given, first

2 There are times when you need to break out a name into separate pieces, and trying to use a single
variable for a name and parse out the components is a huge challenge. The best example is probably a form
where the pieces of the name need to be in separate fields. If you want to alphabetize names by last name
and first, you also need the component parts. Greetings in letters and like can be handled with a separate
variable for just the greeting, but from a user interface perspective, separate variables for name parts may
be best.

It is certainly easier for a user to enter a full name in a single field, so user interface considerations may
favor a single variable when the component parts are not needed. If you are developing a single template
or template set in which only full names are used, it may be tempting to use full name variables. What
happens, however, if you later need to add a template or graphical form that requires the separate
components of the name? What happens when you want your users to be able to use the same answer file
with another template or template set where separate name variables are used? In addition, no matter what
you say in your prompt, getting a user to enter a middle initial or middle name can prove challenging unless
there is a separate field for it.

Because of these considerations, we favor at least breaking "important" names up into separate variables.
By important, we mean client, opposing party, spouse, children, and perhaps others, depending on the
context. In our experience, these are the names for which component parts are most frequently needed.

This issue has important ramifications when it comes to sharing templates and trying to develop
standardized variable names. Will the standardized variables need to include only separate variables for
name parts, full name variables, or both? Our feeling is that it probably needs to include both, which
diminishes the usefulness of the standardized names somewhat, but there will be times when a template
developer feels compelled to use a single variable for a name.

 middle name(s)
 middle initial(s) (can't always compute easily since person may have multiple

middle names)
 given at birth, if different (such as maiden name)
 prefix – Mr, Mrs, Ms, Dr, Hon, etc.
 suffix - Jr, Sr, etc.
 aliases and “other” names

addresses

Addresses should usually be gathered component-wise, and assembled into horizontal
strings or vertical lists as required by a particular location or field.

Use two street address variables to accommodate apartment numbers and multi-line street
addresses, but check if address line 2 is answered when using it in template or
computations.

pronouns

You can implement pronouns as either gender MC variables with merge text, or as
computations based on such variables. The latter may take a little more work, but look
better on the face of the template.

Dialogs

Naming
See Naming HotDocs Components below for recommended dialog naming standards.

Organization
The allocation of variables among dialogs should reflect a logical breakdown of questions
that will provide a coherent user experience. Take into account any conditional
partitioning of the texts in which they appear, so that irrelevant and unrelated questions are
not asked together. Avoid “default dialogs” (single-question windows generated by
HotDocs when a variable has not been associated with a dialog).

Consider using “title screens” – opening dialogs that just consist of Additional Text,
displaying the template name, credits, and general instructions or scope notes. Closing
screens are also useful.

Remember that you can script conditional warning dialogs in case of improper user input.

Layout and content
1. Extra spacing (blank lines) should be used sparingly.
2. Leave prompt alignment in dialogs set to “above fields” in most situations [default]
3. Embedded dialogs may be confusing to user

a. if used, use ellipsis in prompt
b. Use @prompt to get a better name in the parent

4. Keep dialogs short enough so they display fully without scrolling when viewed in
an IE window at 600x800 resolution.

5. Group True-False variables when possible, to avoid long sets of Yes/No prompts
6. When a T/F variable appears in a group of one, consider alerting users how to clear

the selection. (Right click.)

Dialog scripts
LIMIT NUM can be used to prevent users from entering more than a given (fixed, user-
supplied, or computed) number of entries in a repeating dialog.

Use HIDE and SHOW rather than GRAY and UNGRAY in most contexts since their use
makes for a cleaner interface. But use GRAY and UNGRAY for:

 Cases where the user expects to see subsidiary questions and graying them will
add to their understanding of or confidence in the template.

 Cases where HIDE and SHOW cause too much disruptive jumpiness in the
dialog.

REQUIREd answers can be powerful, but frustrating for users who may want to
temporarily leave something unanswered and return to it later.

Remember that SETting a variable renders it uneditable by a user. To prepopulate but
allow user revision, use DEFAULT. But watch out for endless loops caused by defaults in
repeated dialogs. (To avoid that, condition the default upon some other variable having
been answered.)

Interviews
Use an INTERVIEW computation to speed up moving backwards and forwards in
dialogs. The INTERVIEW computation avoids the necessity for putting a computation
directly in the template to generate a custom interview and allows you to use the same
component file for an interview-only template.

If you create an INTERVIEW computation, be sure to go into the Component File
Properties in the Component Manager and check the box for "Use INTERVIEW
computation".

Resources
Consider alerting users through prompts of dialog elements to the availability of resources
(help).

You can use URLs as helps, and when selected by users their corresponding web pages
will pop up.

In the component file settings, under the "Server" tab, you can specify that the resource
pane is initially on. You can also disable the ability of the user to hide it. If the resource
pane is showing, the help for the dialog will show in the resource pane and the question

mark will not appear. Some developers have felt the need to hide the resource pane,
since its size can vary, because of a need for more screen real estate for the interview.

Scripting
Scripts are found in computations, IF expressions, and dialogs. Script-like instructions
can also be present in templates.

Negation
Choosing between ! and NOT, both valid syntax for negation, is primarily a matter of
readability. For instance, you will probably want to say NOT Landlord is attorney TF,
but Landlord entity MC != "Person".

REPEATs
Use whenever there is more than one of a given thing; avoid variables like Child1, Child2,
etc. -- even if there are only two possible iterations.

Use LIMIT when you or the user can easily specify a fixed or maximum number of repeats.

IF statements
1. Delete extraneous hard returns (inserted by HotDocs following IF and END

instructions) within paragraphs to improve readability. Note that HotDocs will do
this automatically for you if you choose the ‘Smart’ option under Template
Development settings.

2. Standardize the location of hard returns and spaces relative to IFs (usually at end of
conditional material)

3. Minimize the text included redundantly in each branch
a. maybe even to the extent of breaking up words, e.g., if first letter capitalized

in one branch but not another.
4. Don't use TFvar = TRUE (redundant) or = FALSE (use NOT instead)
5. In general, when dealing with alternate texts for the true and false case of a

variable, deal with the true case first (if x ... end; if not x ... end) and use ELSE IF
structure in most such cases (if x ... else ... end)

6. Explicitly cover the cases in which variables used in the IF expression may be
unanswered, to avoid confusing results in the assembled document.3

3 All of the text within the IF statement will be omitted.

This may be an oversimplification, but whenever and wherever you instruct HotDocs to do something if X
is the case, and the user fails to give it an answer on the basis of which it can determine whether or not X is
true, HotDocs will insert asterisks, underlines, or your other preferred unanswered indication in the
document. Both for variables (including computations) and for IF statements.

If you want to generate clean documents even for users who fail to answer key questions (and most of us
do), it's thus important to be sure that HotDocs is never totally stumped for what to do.

For computations, a handy way is to initialize them to a value by putting an empty string, a zero, or a
FALSE on the first line (for text, number, and TF vars, respectively).

Inserted templates
Inserted templates are useful for modularizing large pieces of templates, or those that are
used in more than one template.

There are issues with subtemplates. Section breaks require special care, and can cause
problems with page numbering, paragraph numbering, and styles.

If you create an inserted template by selecting a portion of text and have HotDocs
automatically create an inserted template, HotDocs will automatically point the inserted
template's component file to the master template's component file. If you insert an existing
template into another, no automatic pointing occurs.

At a minimum, the inserted template's component file must either contain the variables,
dialogs etc., OR be pointed to another component file that contains them. If you do not use
the pointing approach, and need to refer to the same components in the master template,
then you will need to maintain copies of all shared components in both template's
component files.

Here's a recommended approach:

1. If your inserted template is a) inserted only in one master template, AND b) not
designed to be assembled separately: Point the inserted template's component file. Having
only one place to manage components is simpler.

2. If your inserted template needs to a) be assembled separately, OR b) will be inserted in
multiple master templates: Maintain the components in both component files. We
recommend this because: 1. Pointing to a component file other than the master or inserted
template's component file does not currently work in HotDocs Server. 2. In HDS, when
dealing with inserted templates, we recommend using INTERVIEW (not feasible if the
inserted component file points and also has to be assembled as a separate document).

For IF statements, you can add an ANSWERED(var) test, ensuring that the expression has a value (false)
even if the var is not answered. For example, <<IF ANSWERED(Dependent other TF) AND NOT
Dependent other TF>>(None)<<END IF>>

There are other ways to avoid unansweredness, e.g. by defaulting variables to certain values absent user
input, or by using the ZERO(num var) instruction for potentially unanswered numbers. But a good place to
start is just to put yourself in HotDocs's place and ask "will I always know enough to know what to do
here?"

Of course, sometimes some questions are so important that you want HotDocs to flag the absence of an
answer, not only in the interview, but in the document.

Default answers
There are many ways to prepopulate answers, e.g.

 overlay answer files (not yet usable in HDS)
 variable specific defaults [in the advanced tab]
 logical pre-sets on the face of the template or in computations
 DEFAULT instructions in dialog scripts
 default option for multiple choice variables

Consider including all global defaults in one computation to minimize clutter in your
template.

Commenting scripts and computations
It’s good practice to include comments in scripts that are particularly tricky. You can use
// to place a comment on any line, and the word QUIT to have all subsequent text treated
as a comment.

Comments following “//” in IF statements can also be useful in templates.

Word processing issues
Unless your user community is purely WordPerfect based (in which case WPT templates
make sense), use RTF for templates, which both Word and WordPerfect can handle. RTF
is not rendered exactly the same for all versions of Word and WordPerfect, so if you have a
mixed user base you’ll want to do a lot of testing.

Use word processing level automation for the following features:

 paragraph numbers
 cross references
 tables of contents
 block protect
 tables for captions, signature lines
 general document format preferences
 fonts
 headers
 margins
 styles

For consistent production of templates from HDS the following should be observed for
word processing features:

 Use styles as much as possible
 Only use fonts that are known to ship with all versions of Windows and are

installed by default

Be aware that certain word processing features (auto numbering, cross references,
automatically generated TOCs, indices, etc.) cannot easily be automatically updated in

documents generated from HotDocs Server. (In desktop mode you can PLAY a macro to
do the job.) Since some legal services clients will be unsophisticated word processor
users, who might not understand about updating references, it may be better to use HD
coding and auto-numbering in such situations (they would be presumably few in number
and limited in scope). Or alert the user in a closing dialog that they will need to Update
their documents after assembly.

Note that there are also lots of standards issues for the actual forms (apart from their
automation). These include document page layout formats, whether names are capitalized
or not, where the caption begins, page numbers, etc. The development of these kinds of
standards generally springs from a desire to have a consistent "look and feel" among
documents originating with the organization. Even outside that context, there are good
reasons for adopting such standards. There are at least perceived benefits in having
families of documents that typically are prepared together (e.g. multiple documents filed
in the same court case, or prepared for the same client) have a similar appearance. If, in
the case of litigation-related documents, there are local customs and practices with regard
to what documents look like, standards can help insure adherence to those practices.

Here’s an example:

FORMATTING FOR NORTH PENN LEGAL SERVICES TEMPLATES:
As of 1/21/2004

Word 98 or more recent

1 wide margins all sides (unless necessary to do otherwise)

Time New Roman, 12 point for general text, 16 point for titles (no bold or underline)

Left justification

1-1/2 line spacing for pleadings

Spacing and underlining by using tabs, whenever possible

No automatic paragraphing, unless necessary

All captions in tables

Paragraph formatting: no indentation, .5 tabs

Numbered paragraphs number at left margin, one tab indent for text

Non-breaking spaces
HotDocs answers can be formatted as nonbreaking (via check box on text variable
editor.)

To insert a "non-breaking space," in Word, hold down [Ctrl] + [Shift] and press [Space] -
then entire phrase (e.g. "Mr. Jones") will stay on one line.

You insert a non-breaking space directly in a text computation where, for example, you
are concatenating a title with a last name, by using the «.ns» dot code.

Graphical forms
[This is a placeholder for material to be added on standards peculiar to PDF templates,
e.g., fonts, answer positioning, overflow handling]

Naming HotDocs Components

Introduction
HotDocs template developers have great freedom in naming the components that make
up their applications. There are good reasons, however, to follow standards in naming.
This document reviews some of the main choices you have, the considerations in favor of
each, and some recommendations. While there are minor issues with other component
types4, this document focuses on variables and dialogs. And of course there are many
other dimensions of standardization that are addressed elsewhere, such as choosing what
variables to have in the first place, and how best to organize them into data structures.
(You can have great component names and still have a programming mess!)

Note: While many of the considerations and recommendations here apply to all versions
and modes of HotDocs, this document is intended for an audience of developers who are
building templates intended for delivery through HotDocs Server. Clauses and other
features not presently supported in HotDocs Server are not addressed.

Why follow standards in component naming?
Standards are useful both to developers and to users.

For users, since each answer in an answer file is stored with the name of the associated
variable at the time the template is used, consistency of naming across templates and
across time will spare them from having to enter the same information more than once,
and from having previously entered information suddenly seem to disappear.5

For developers, standardized naming will improve efficiency and quality. If you get in
the habit of following certain naming conventions, you will spend less time thinking up
the name of each new variable, and be able to type in the names of existing ones with
reasonable confidence, rather than having to look them up all the time or running the
danger of creating two slightly different ones for the same underlying data element. You
will also be able to copy and re-use components from prior templates or from a “lending
library” of components that you or others have created.

4 For instance, you can affirmatively name a Merge Text component, which can be useful to make it less
ugly in the template, more intelligible, and more easily found in component lists.

5 For example, if you use Name of plaintiff in a complaint template and Plaintiff's name in a motion
template, a user who assembles a complaint and then tries to generate a motion with the same answer file,
will not see the plaintiff name previously provided. The user will be forced to re-enter the name. And if, in
a belated effort to be consistent and follow these standards, you then rename both variables to Plaintiff
name, the user, by now very puzzled and frustrated, who simply tries to re-generate either document using
the saved answer file will again have to re-enter the name. Hence it is not only important to be consistent
across templates but to think about a naming scheme early in the development process to avoid renaming
variables after answer files have been created. It is possible to write remedial scripts to set previous
answers to newly named variables, but that should generally be a last resort.

A good overall naming scheme is one that

 is not too complex,
 is easily followed, and
 can be flexibly applied.

You may understandably depart from standards when

 you’ve already created a lot of templates with different naming conventions
 you want to share answers with published forms that use different names

Some variables are less important than others to standardize:

 those that are not actually stored in answer files, e.g. computation variables
 those that are idiosyncratic and unlikely to be used in other templates

What you can do
For the most part, developers are limited only by their imaginations in naming
components. Some people have flexible and ad hoc naming practices. Others have very
strong opinions about their methods and follow them compulsively.

For instance, you could name the variable designed to gather a child’s name in any of the
following ways (and endless others):

 Name of this child
 Child’s name
 Name of child
 Child Name
 Child name
 ChildName-t
 Child name TE
 ChNamet
 child_name_txt
 txt Child Name
 tChildName
 strChildName [str for “string”]
 Child TE [“name” assumed]
 tChild
 CHILD Name TE

And you could randomly mix different styles for different variables in the same
application. E.g., Child Name, StreetAddress TE, birthDate-d, etc. (But please
don’t!)

What you can’t do
There are some built-in limits to names. For instance,

 Only 50 characters are permitted
 The first character must be a letter
 Certain characters are not permitted at all, such as:

o . (period)
o ()
o %
o , (comma)
o []
o “ (double quote)
o : (colon)
o $

 The following characters can’t be used when there is a space immediately to their
right or left:

o +
o >
o =
o - (hyphen)
o <
o !=
o *
o <=
o /
o >=

 The following non-alphanumeric characters evidently can be used without
restriction: ` ~ ! @ # ^ { } | \ ; ? '

 Certain upper case words are not permitted, such as those used in HotDocs
instructions and expressions (IF, ASK, OR, AND, LIMIT, MONTH, etc.)

Capitalization

Issue
What if any letters in your component names should you capitalize?

Considerations
 Component names are case sensitive, so you need to be consistent to avoid errors

and inadvertent duplication.
 Unless you’re going to write a separate prompt, use capitalization that looks good

on a dialog. (Recall that, by default, the name of a variable becomes the prompt
unless you affirmatively specify a prompt.)

Recommendations
 Use “sentence case” for variables (only first word and proper nouns capitalized).

E.g., Landlord is Massachusetts corporation TF.

 Use “title case” for dialog names (each significant word initially capitalized). E.g.,

Terms of the Tenancy.

 Do not use all uppercase words, both to avoid “shouting” and because HotDocs

may someday use the word as a new instruction or expression model.

You may want to leave even the first word uncapitalized if it represents actual lowercase
text to be used. (E.g., is/are for plaintiff CO.) Some developers also find it useful to
distinguish between “behind-the-scenes” variables (e.g., temporary or disposable ones
used to handle conversions, parsing, data import) from those that actually appear in
documents by beginning the former with a lowercase letter. For instance, parse name
CO (behind-the-scenes) and Full name CO (appears in documents).

Spaces

Issue
Should you use spaces between the words in your component names?

Reasons to use spaces
 Names with spaces are easier for people to read in most contexts.
 Names with spaces are less likely to trigger spell check errors.
 You’ll want spaces if your variable name will serve as the default prompt.

Reasons not to use spaces
 It is arguably easier to read scripts when each variable is one continuous string of

characters. (Makes it easier to distinguish them from instructions. But
colorization in current HotDocs mostly obviates this point.)

 Some external programs and databases don’t allow spaces in variable names, and
not having them in HotDocs makes it easier to use consistent names with such
programs.

Using underscores to separate words arguably achieves decent readability of both
templates and scripts, but still requires an affirmative prompt to be written for every
variable and is more awkward to type.

Recommendation
 Use spaces, and don’t use underscores.

Data type indicators

Issue
Should you include some code at the beginning or end of variable components to indicate
their data type? E.g., tChildname, Child name TE, Maturity Date_txt, Temp-n.

Reasons to use indicators
 You can tell instantly what kind of variable one is. [But in some developmental

contexts an icon or other clue is present to indicate data type, and in the body of a
template the name or context usually makes it clear, and if not you can quickly
find out.]

 They can make a template set easier to maintain, especially when taking over
from another developer.

 They are useful when linking HotDocs answers to fields in an external database
because the naming convention helps to match types and avoid errors in HotDocs
and provides backward traceability to fields in database tables.

 They may be useful in some contexts when HotDocs answers are referenced in
XML files. [Even though HotDocs’s own XML answer file format includes data
type tags right in context.]

 LexisNexis uses the two letter indicators in most of its many published template
sets and recommends the practice in its trainings.

Reasons not to use indicators
 They require entry of a distinct prompt or title, even if the rest of a variable could

serve fine as a default prompt. [But you can simply copy and paste the name and
delete the indicator. And if you use a “lending library” component file, you only
need to do this once per variable.]

 They can interfere with readability, especially for non-programmers (e.g.,
substantive experts reviewing a template.)

 They add to the length of the variable.
 They require a couple extra keystrokes every time you create a variable or type its

name.

Recommendations
 Use the following standard abbreviations at the end of variable names, preceded

by a space:

o TE for text
o DA for date
o NU for number
o TF for true/false
o MC for multiple choice
o CO for computation
o Exception: INTERVIEW (the specially named computation for

controlling dialog flow)

 Don’t use a type indicator like “DI” in dialog names. (You can then distinguish

them by their lack of one, and their title case capitalization.)

Length

Recommendations
 Make component names only as long as necessary to be meaningful,

unambiguous, and reasonably recognizable in various contexts.

Word choice

Issue
What words or symbols and how many of them should you use?

Considerations
You probably want to use names that
 make a decent prompt for the question (minus the data type indicator)
 use common words
 are as universal as possible, so they can be used consistently in other templates,

present and future
 unambiguously describe their variable to avoid it being used in other contexts

with different meanings
 are likely to be stable, so as not to orphan existing answers and require template

revision

Recommendations
 Avoid plurals and possessives. (Apostrophes in variable names can cause

problems with Word's “smart quotes” feature. Ditto for pairs of dashes that Word
may turn into an “em” symbol.)

 Avoid prepositions and articles. Use Plaintiff name TE rather than Name of

plaintiff TE; use Petitioner is attorney TF rather than The petitioner is an
attorney TF

 Use abbreviations sparingly and consistently (unless you are really short on

characters to name a variable unambiguously, or are creating a temporary variable
like Temp NU.)

 Use form names in a variable name only when similar information might be used

elsewhere with a different meaning (i.e., not merely because the variable appears
to be unique to the form you are currently automating). For example, use
Complaint filing date DA, instead of Filing date DA if it is possible in
additional forms to have other filing dates.

 Name True/False variables after the optional or conditional section of text they

trigger (Breach of warranty of habitability TF), or after the condition or choice
they represent (Representative is attorney TF, Impound client address TF).

 Don't use “?” in a True/False variable name.

 Don't waste more time than you save by being too compulsive about naming

nuances!

Some people like to name computation variables used to produce short alternative texts
with those texts separated by “/” followed by a hyphen and a word or phrase that shows
what the alternatives depend on. For example:

 he/she/it/they-plaintiff CO
 is/are-one or several properties CO
 s-only one plaintiff CO [for verb suffix]

Often nothing besides the alternatives is needed:

 subsidiary/subsidiaries CO

For dialogs specifically,

 Use meaningful names that serve well as titles for display. (Even though you can

now specify a separate title for dialogs.)

 Take care not to overuse the word “information”.

 Use single words in title of dialogs that repeat.. E.g., Creditor Details

Word sequence

Issue
In what order should the words in your name go?

Considerations
Since variables are listed alphabetically in component manager, it is highly recommended
to make sure related variables are listed together by using names like Plaintiff phone TE
and Plaintiff city MC rather than Phone plaintiff TE or City plaintiff MC.

On the other hand, slavish observation of this rule can result in names that are difficult to
read. E.g., Spouse residence mortgage principal NU.

Recommendation
 Put the most significant word(s) first, while paying attention to readability.

 22

Examples of recommended names
Client name TE Use “client” for the main person to which

an answer file relates, even if the variable
may sometimes be used in templates
intended for pro se use (in which case
you can appropriately vary the prompt).

Plaintiff name TE Note that variables like this may often be
set in logic based upon the client’s or
other parties’ roles in a case, rather than
directly asked, since a person may be one
kind of party in one context and a
different one in another.

Landlord is Massachusetts corporation TF Proper noun is capitalized.
is/are for Plaintiff CO Exception to rule of capitalizing first

letter of first word, because the computed
words here will always be all lower case.

Monthly salary NU Entered directly by the user
Monthly salary CO E.g., computed from weekly amount
Spouse full name CO Computed from first, middle, last, prefix,

suffix, etc.
Representative is attorney TF Form of a statement
Creditor Details A dialog

Standard HotDocs variables for templates that may be invoked
from a case management system

Summary
This section defines a set of standardized HotDocs variable name and types for common
data elements that play a role both in case management and in document assembly
systems. Background and rationale for these standards can be found in Best practices for
templates that will be invoked from case management systems (March 2010).

Apart from several utility variables noted at the end, variables under this standard observe
this pattern: [Primary role, and optionally a Secondary role] [attribute] [variable type
designator]. E.g., Client name first TE, Opponent Attorney address street TE.
Lists of supported roles and attributes follow. All combinations are “legal,” but certain
ones (like Judge Child SSN TE) are unlikely ever to be used.

Roles
Primary roles

A primary role is one played with respect to the factual situation as a whole, not with
respect to some other particular role. There can be one or more instances in an answer
set; thus the variables will typically be singly indexed in HotDocs.

 23

Role Notes
Client A person whose situation is the focus of the data in the

answer set
Opponent A person in a proceeding or relationship whose interests are

adverse to or at least not necessarily aligned with a client
Applicant
Plaintiff
Defendant
Petitioner
Respondent
Judge

Note – It is a good practice to use variable names that reflect as specific as possible a role
(or procedural posture) that an person plays in a template. Thus, even if the plaintiff in a
divorce petition template is almost always a client, it is best for variables referring to
him/her to use the word Petitioner.

Secondary roles

Secondary roles are to be used only in combination with a primary role, because they
always pose the question whose _________? For instance, Opponent Child. There can
be one or more instances per primary role in an answer set; thus the variables will
typically be doubly indexed in HotDocs.

Role Notes
Attorney ‘Attorney’ mostly refers to a lawyer, but might be used for a

law student or other representative
Child
Spouse
Parent
Employer

Attributes
Attribute/Type Notes
address city TE
address county TE Some developers may use MC, but could default it to a TE if

prepopulated.
(Note that US post office has standard code for every county.)

address state MC Options are those for fifty states, District of Columbia, and
territories. Can be used for province in other countries.

address country TE
address street TE
address street2 TE Note no space between ‘street’ and ‘2’. Used for a second line

between the addressee and the city/state/zip in an address.

 24

address zip TE Can be used for postal code in other countries.
birth date DA
email primary TE
email secondary TE
employed TF
gender MC Options are male and female
health TE
in military service TF
name full TE When name is not gathered in pieces
name alias TE
name birth TE One’s given name at birth, before any name change.
name former TE One’s immediately prior name, whether or not the birth name.
name first TE
name last TE
name middle TE
name prefix TE e.g. Mr., Ms., Dr., Hon.
name salutation TE Dear ____
name suffix TE e.g. Jr., Sr. This variable can also be used for ‘second last

names’ in Spanish and other cultures.
occupation TE
SSN TE
telephone home TE
telephone mobile TE
telephone work TE

Utility variables
Name Notes
Answer set includes
answers from a CMS
TF

Can be used by a developer to control behavior of HotDocs
interview when some data has been passed from a case
management system

Variable standard TE To store the name of the standard being followed
(This one can be referenced as ‘LHI CMS.’)

An illustrative name set
HotDocs variable name Notes

Client name first TE
Client name last TE
Client name middle TE
Client name salutation TE
Client name alias TE
Client name birth TE
Client address city TE
Client address county TE
Client address state MC

 25

Client address country TE
Client address street TE
Client address street2 TE
Client child type MC natural, step, or adoptive
Client child name first TE
Client child name last MC
Client child name middle TE
Client child SSN TE Number in format 999-99-9999
Plaintiff address impound TF
Plaintiff county residence months NU
Plaintiff county residence years NU
Plaintiff marriage number NU
Plaintiff minor children by another
relationship TF

Plaintiff state residence months NU
Plaintiff state residence years NU
Plaintiff employer name TE
Plaintiff employer telephone TE
Plaintiff attorney address city TE
Plaintiff attorney address state MC
Plaintiff attorney address street2 TE
Plaintiff attorney address street TE
Plaintiff attorney address zip TE
Plaintiff attorney bar number TE
Plaintiff attorney firm name TE
Plaintiff attorney name TE
Plaintiff attorney salutation TE
Plaintiff attorney telephone business
TE

Plaintiff attorney telephone fax TE
Plaintiff attorney type MC

 26

Development processes

Selecting, designing, and planning applications
See Keys to a Successful Document Assembly Project,
www.capstonepractice.com/keys.pdf, for an overview of considerations involving in the
selection, staffing, design, and implementation of a document assembly application.

Particularly for applications intended for widespread use over the Internet, it is important
to be clear about intellectual property rights. (Who owns the work product? Do you
have clear rights to use the source materials?)

Some design challenges
One basic design question is how much to modularize your templates into computations
and inserted subtemplates. There are tradeoffs between embedding complexity in
computations or inserts, versus having logic evident on the face of the template. High
modularity can increase the cost of development but reduce the cost of maintenance.

Use good names or comments to describe your logic and isolate it. That way people can
understand what is happening when reviewing the template and can burrow in if they
want to verify the details.

Because HotDocs Server does not support clauses and clause libraries, there is no easy
way to allow users to sequence selected text modules in online mode. Where such
functionality is critical, though, you can prompt for explicit orderings (by number) and
use WHILE loops to properly sort selected items.

Separate vs. master component files
Consider the many advantages and disadvantages of “pointed” or master component files.
Only a few are mentioned here.

Advantages: One set of variables, dialogs, and other components can be shared across
multiple templates, promoting consistency and efficiency. You can change things in one
place, and all templates will reflect the change.

Disadvantages: Two people cannot simultaneously edit templates pointing to the same
component file. All your eggs are in one basket, and if the master file becomes corrupt,
you better have a good backup!

The relatively new Template Manager makes it easier to manage multiple component
files, obviating some of the prior advantages of master files.

 27

Documentation
Give a lot of thought to the various kinds of documentation that can be maintained in a
project.

 A written “action plan and design notes” is a useful way to get a project team on the
same page and record design decisions for posterity. It can clarify purposes,
expectations, and specifications.

 A “master variable list” can often usefully be created in advance of actual coding,
e.g. using a spreadsheet.

 Template printouts are particularly useful in color since that will show HotDocs
codes in blue.

 HotDocs Developer lets you easily create component printouts.
 Short user guides are good places to supply basic guidance, answer frequently

asked questions, and pass on tips & tricks. Grab screen shots with Alt-PrintScreen
and paste them into your guide.

Other resources
http://www.probono.net/dasupport/ is the official repository of LHI support materials.

